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Abstract
We solve the master equations of two charge qubits measured by two serially
coupled quantum point contacts (QPCs). We describe two-qubit dynamics
by comparing entangled states with product states, and show that the QPC
current can be used for reading out results of quantum calculations and providing
evidences of two-qubit entanglement. We also calculate the concurrence of the
two qubits as a function of dephasing rate that originates from the measurement.
We conclude that coupled charge qubits can be effectively detected by a QPC-
based detector.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Quantum information processing in charge-based solid state nanostructures has attracted
widespread attention because of the potential scalability of such devices, and the relative ease
with which such charge devices can be manipulated and detected [1–4]. Recently, two-qubit
coherent evolution and possibly entanglement have been observed in capacitively coupled
Cooper pair boxes [5]. For universal quantum computing, two-qubit operations are required,
so the realization of controlled two-qubit entanglement is regarded as a crucial milestone for
the study of solid state quantum computing. While two-qubit information can be detected
with one measurement device on each qubit, it is also important to search for a detector that
is directly sensitive to two-qubit information, and to develop a proper formalism to study
two-qubit measurement processes [6–8].

The ultimate criterion for the detection of qubits is whether we can distinguish the results
of a quantum computation by the output signal of the detector, e.g. current or conductance of
a single electron transistor. In the case of one qubit, two single-qubit states |↓〉 and |↑〉 need
to be distinguished. In the case of two qubits, four two-qubit state, |↓↓〉, |↓↑〉, |↑↓〉, and |↑↑〉
(we will call them |A〉 ∼ |D〉) need to be distinguished before the qubit states are destroyed by
the measurement. As we mentioned above, measurement of multi-qubit states can generally be
achieved by multiple single-qubit measurements on each of the qubits, respectively. Here we
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study a different detection process: the temporal behaviour of a detector (QPC in the present
study) that simultaneously couples to two qubits. We show that information contained in the
temporal evolution of the QPC current can help us distinguish different two-qubit product
states, and some entangled states from the product states. Indeed, one motivation of our study
is to obtain direct evidence for the entanglement of the qubits, possibly from the detector
current or other measurable quantities.

In [8], we studied a particular scheme for the quantum measurement of two charge qubits by
a two-island single-electron transistor (SET), and showed that the SET is an effective detector
of the two-charge-qubit states. Here the charge qubits are constituted of two coupled quantum
dots (QDs) with one excess electron. Due to tunnel coupling of the QDs, the wavefunctions
in a qubit are superpositions of localized states from each of the QDs. If a qubit is prepared
in a single QD state, it tends to oscillate between the two sides of the double QD. If we define
the local states as |↑〉 and |↓〉, the qubit state oscillates between the two logical states with a
frequency determined by the tunnelling coupling and the difference of the energy levels of the
two QDs. Time-dependent behaviour of this coherent oscillation of the qubits is determined by
the initial state. If we take the initial time to be that when a final quantum operation is applied
to the qubit, the detector readout current reflects the results of quantum calculation. The qubit
states interact with the readout current by changing the energy (and therefore occupation) of
the electronic states in the SET islands and possibly the tunnelling rates of the junctions (by
modifying the island electronic states themselves) on both sides of the islands. Although,
in [8], we show that the SET can distinguish the different coherent oscillations between the
two-qubit product states and the entangled states, we have not yet investigated the two-qubit
dynamics itself.

Here we would like to study quantum point contact (QPC) as a detector for two coupled
charge qubits (figure 1). A QPC is essentially a one-dimensional conducting channel and
is considered to be an effective charge detector, similar to the SET. The particular scheme
we consider consists of two low-transparency QPCs connected in series through a single level
quantum dot. Each of the QPCs, which in this paper simply represents tunnel coupling between
two conducting regions, is close to a charge qubit so that its current is dependent on the state of
the respective qubit. In order to take into account an interaction between qubits, the distance
between the two qubits should be small; thus it would be natural that the region between the
two QPCs is also sufficiently small such that its energy level is quantized (figure 2). We include
an on-site Coulomb interaction in our study to describe the Coulomb blockade effect in the
inter-QPC island.

Compared to the SET detector, the QPC detector interacts with qubits only through the
change of tunnelling rates. Although the SET detector is able to describe a variety of features
of the internal states of qubits in [8], we could not identify which of the two interactions (that
between the islands and qubits, which modify the level occupations on the SET islands; or
that between the tunnelling junctions and qubits, where potential by the qubits modifies the
tunnelling rates) plays the major role in the SET detector. Thus, an important question is
whether or not the QPC detector that interacts with qubits only by the change of the tunnelling
rates is also an effective apparatus for detecting the qubit states. In this paper, after discussing
the basic two-qubit dynamics with no detector, we focus mainly on the following issues:

(1) whether we can distinguish the four product states |A〉 ∼ |D〉 of two coupled charge qubits
in the time-domain with a serially coupled QPC detector,

(2) whether we can distinguish the entangled states from the product states of these two qubits,
and

(3) whether the quantum Zeno effects in the coupled charge qubits can be observed.
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Figure 1. Two charge qubits (using double quantum dot charged states) are capacitively coupled to
a detector of two serially coupled QPCs. J is the strength of inter-qubit interaction. No tunnelling
is allowed between the QPC detector and any of the qubits.

Figure 2. Electronic states in the inter-QPC island. We assume that there is only one accessible
electronic orbital state on the island. There are thus in total four possible island states: (a) empty
dot—state ‘a’ has no excess electron on the dot. (b) Single-electron dot—state ‘b’ has one electron
with spin up or down. (c) Two-electron dot—state ‘c’ has two electrons in a spin singlet state
occupying the same orbital state.

In the following sections, we solve the master equations for the coupled qubit–QPC system
and investigate the effectiveness of the proposed QPC detector. In section 2, we present our
formulation of two qubits and the QPC detector. In section 3, we discuss the difference between
the dynamics of a single qubit and that of two qubits. In section 4, we show the numerical
results of two-qubit detection by QPC. Section 5 is devoted to a discussion of QPC detection,
and section 6 consists of a conclusion.

2. Formulation

In the present measurement scheme, the QPCs are capacitively coupled to the charge qubits
(figure 1), so the current through them sensitively depends on the states of the qubits. We
describe the two QPCs using two tunnel matrix elements only and neglect further internal
structures [9]. We assume that the qubit–QPC coupling is purely capacitive, so there is no
current flowing from the qubits to either of the QPC electrodes. The Hamiltonian for the
combined two qubits and the QPCs is written as H = Hqb + Hqpc + Hint. Hqb describes
the two interacting qubits (left and right, as illustrated in figure 1), each consisting of two
tunnel-coupled QDs and one excess charge [6]:

Hqb =
∑

α=L,R

(�ασαx + �ασαz) + JσLzσRz, (1)

where �α and �α are the inter-QD tunnel coupling and energy difference (gate bias) within
each qubit. Here we use the spin notation such that σαx ≡ a†

αbα + b†
αaα and σαz ≡ a†

αaα −b†
αbα

(α = L, R), where aα and bα are the annihilation operators of an electron in the upper and
lower QDs of each qubit. Thus, |↑〉 and |↓〉 refer to the two single-qubit states in which the
excess charge is localized in the upper and lower dot, respectively. J is a coupling constant
between the two qubits, originating from capacitive couplings in the QD system [6].

The two serially coupled QPCs are described by Hqpc:

Hqpc =
∑

α=L,R
s=↑,↓

∑

iα

[
Eiα c†

iαsciαs + Viαs(c
†
iαsds + d†

s ciαs)
]

+
∑

s=↑,↓
Edd†

s ds + Ud†
↑d↑d†

↓d↓. (2)
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Here ciLs(ciRs) is the annihilation operator of an electron in the iLth (iRth) level (iL(iR) =
1, . . . , n) of the left (right) electrode, ds is the electron annihilation operator of the island
between the QPCs, EiLs(EiRs) is the energy level of electrons in the left (right) electrode, and
Ed is that of the island. Here we assume only one energy level on the island between the two
QPCs, with spin degeneracy. ViLs (ViRs ) is the tunnelling strength of electrons between the
left (right) electrode state iLs (iRs) and the island state. U is the on-site Coulomb energy of
double occupancy in the island. Note that the number of island states here (figure 2) is much
smaller than that of the two-island SET states [8], where we need to take into account at least
ten types of detector states. In [8], we observed that the two-island SET can represent a variety
of qubit states because of its large number of degrees of freedom. With a much simpler state
structure for the present coupled QPC scheme, we will study whether the QPC current could
still represent the qubit states with sufficient clarity.

The capacitive interaction between the qubits and the QPCs is represented by Hint, which
contains the information that localized charge near the QPCs increases the energy of the
system electrostatically, thus affecting the tunnel coupling between the QPCs and the island
in between [10]:

Hint =
∑

α=L,R

∑

iα,s

δViαs(c
†
iαsds + d†

s ciαs)σαz, (3)

where δViαs is an effective change of the tunnelling strength between the electrodes and
QPC island (we shift the origin of the interaction energy such that δViα,s = 0 corresponds
to the case where qubits are not polarized σαz = 0). We assume that the tunnelling
strength of electrons weakly depends on the energy Viαs = Vα(Eiαs) and electrodes are
degenerate up to the Fermi surface. Then the qubit–QPC interaction dictates that qubit
states influence the QPC tunnelling rate in the form of �(±)

α (E) ≡ 2π℘α(E)|V (±)
α (E)|2 and

�(±)′
α (E) ≡ 2π℘α(E + U)|V (±)

α (E + U)|2, where V (±)
α (E) = Vα(E) ± δVα(E)(δVα(E) > 0),

and ℘α(E) is the density of states of the electrodes (α = L, R). Hereafter, we use �(±)
α s

and �(±)′
α s estimated at the Fermi energy µα of the electrodes to describe the tunnelling rate

in the detection process of the qubit states by the two QPCs. This is reasonable from a
practical standpoint since many experiments are described using �α [1, 3]. The values of the
corresponding�(±)

α s are determined by the structure of the system such as the distance between
the qubits and the QPCs. For example, a |↓〉 state (|↑〉 state) in a qubit means the excess charge
is localized in the lower (upper) dot, so the corresponding tunnelling rate should be �

(−)
L

(�(+)
L ). Therefore, two-qubit state |A〉 would lead to QPC tunnelling rates of (�

(−)
L , �

(−)
R ) or

(�
(−)′
L , �

(−)′
R ), depending on whether or not the island between the QPCs is doubly occupied.

Similarly, |B〉, |C〉 and |D〉 states correspond to (�
(−)
L , �

(+)
R ) (or (�

(−)′
L , �

(+)′
R )), (�(+)

L , �
(−)
R ) (or

(�
(+)′
L , �

(−)′
R )), and (�

(+)
L , �

(+)
R ) (or (�

(+)′
L , �

(+)′
R )), respectively.

We construct the equations for the qubit–QPC density matrix elements at zero temperature
T = 0, similar to [8]. This method is applicable when the energy level of the inter-QPC island
is in between the chemical potentials of the two electrodes. The wavefunction |	(t)〉 of the
qubit–QPC system can be expanded over the Hilbert space spanned by the two-electron states
of the qubits, the island states of the QPC shown in figure 1, and all possible electrode states.
We choose |0〉 to refer to the initial ground state of the whole detector system (two electrodes
and the inter-QPC island) where the two electrodes are filled with electrons up to µL and µR,
respectively, and the two QPCs and the inter-QPC island are empty of excess electrons. The
basis states for the QPC can then be constructed from |0〉 by moving electrons from the left
electrode (with higher chemical potential) to the inter-QPC island and the right electrode. We
categorize the detector states by the number of electrons that are transferred from the left to
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the right electrode (figure 1):

|	(t)〉 = |	0(t)〉 + |	1(t)〉, (4)

where |	0(t)〉 is the part of the wavefunction that no electron tunnels through to the right
electrode and |	1(t)〉 represents the part of the wavefunction where one or more electrons are
transferred to the right electrode. |	0(t)〉 can be expressed as

|	0(t)〉 =
∑

z0=A,B,C,D

{
b(0)a,z0(t) +

∑

ls

b(0)b,z0
ls (t)d†

s cls +
∑

l1l2

b(0)c,z0
l1l2↑↓ (t)d†

↑d†
↓cl1↑cl2↓

}
|0〉|z0〉,

(5)

where b(0)a,z0(t), b(0)b,z0
ls (t) and b(0)c,z0

l1l2↑↓ (t) are coefficients for the respective states. The
superscripts refer to the number of electrons transferred (0 here), the states of the QPC island
(as illustrated in figure 2), and the four two-qubit basis states. The subscripts refer to the left
electrode states from which electrons tunnel into the islands. Thus each of the terms in |	0(t)〉
indicates a state with as few as zero but up to two electrons moved from the left electrode to the
QPC island, while no electron is transferred to the right electrode. |	1(t)〉 can be expressed
as

|	1(t)〉 =
∞∑

n=1

∑

z0=A,...,D
β1···βn

{
b(n)a,z0

β1···βn
(t) +

∑

ls

b(n)b,z0
lsβ1···βn

(t)d†
s cls

+
∑

l1l2

b(n)c,z0
l1l2↑↓β1···βn

(t)d†
↑d†

↓cl1↑cl2↓
}

⊗
n∏

i=1

(
c†

l′i s ′
i
cr ′

i s ′
i

)
|0〉|z0〉, (6)

where βi ≡ (l ′i , r ′
i , s′

i ) represent the left electrode, right electrode, and spin states involved
in the transferred electrons. Similarly to the expressions of the coefficients for |	0(t)〉,
here b(n)a,z0

β1···βn
(t), b(n)b,z0

lsβ1···βn
(t) and b(n)c,z0

l1l2↑↓β1···βn
(t) are coefficients for the states with n electrons

transferred to the right electrode, and another zero to two electrons moved from the left electrode
to the QPC island. The superscripts again refer to the number of transferred electrons (n), the
QPC island states, and the qubit basis states.

Substituting this wavefunction into the Schrödinger equation for the whole qubit–QPC
system, i |	̇(t)〉 = H |	(t)〉 (having set h̄ = 1), we obtain a set of algebraic equations for
the coefficients in equations (5) and (6). Assuming zero magnetic field and spin-independent
electron tunnelling, the density matrix elements can be defined as

ρu1u2
z1 z2

(t) ≡
∑

β

∫
dE dE ′

4π2
b̃u1,z1

β (E)b̃u2,z2∗
β (E)ei(E−E ′)t , (7)

where b̃u1,z1
β (E) is a Laplace-transformed element of bu1,z1

β (t) after summing over β =
{0, β1, β2, · · · , βn, · · ·}, the electrode states of transferred electrons as discussed above (‘0’
corresponds to coefficients in equation (5)).

After a lengthy calculation,we obtain 48 equations for the density matrix elements ρu
z1z2

(t),
where u = a, b↑, b↓, c indicate quantum states of the inter-QPC island (figure 2) as shown in
the appendix3. Because we assume that there is no magnetic field, ρ

b↑
z1z2(t) = ρ

b↓
z1z2(t).

The readout current is obtained as a time derivative of the number of electrons in the
island [8]:

I (t) = e�R
[
ρb↑(t) + ρb↓(t)

]
+ 2e�′

Rρc(t), (8)

3 Compared with the two-island SET detector we considered before [8], where we need 352 equations to describe the
coupled qubit–detector system, the number of density matrix equations for the QPC detector is significantly reduced.
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where ρu given by ρu ≡ ρu
AA + ρu

B B + ρu
CC + ρu

DD is the occupation probability of the particular
island state u.

As the difference between �(+)
α and �(−)

α increases, the current difference that depends on
the difference of qubit states increases as well, while the qubits lose their coherence faster due
to the fluctuations in the QPC current, which lead to fluctuations in the qubit energy levels and
thus dephasing. We quantify the strength of the measurement by dephasing rates defined as

�α
d ≡

(√
�

(+)
α −

√
�

(−)
α

)2

,

�α′
d ≡

(√
�

(+)′
α −

√
�

(−)′
α

)2

,

(9)

where α = L, R. These rates are the coefficients of the off-diagonal density matrix elements
of the time-dependent reduced density matrix equations for the qubits. The reduced density
matrix elements are

ρz1 z2 ≡ ρa
z1z2

+ ρb↑
z1z2

+ ρb↓
z1z2

+ ρc
z1z2

. (10)

This definition of dephasing rate is originally introduced by Gurvitz [10] for the case of a
single qubit. The dephasing time is taken as coinciding with the measurement time. Compared
with [10], where there is a single off-diagonal density matrix element, we cannot define a single
dephasing rate because of the complexity of our density matrix equations.

The current of a QPC in the tunnelling regime is very sensitive to the potential variations
of the QDs that are set close to the QPC channel [11]. We thus can choose from a wide range
of parameters for our QPCs. Here we use a particular set of representative parameters:

�A
L = �B

L = �A
R = �C

R = �(−) = 0.8�, (11)

�C
L = �D

L = �B
R = �D

R = �(+) = 1.2�, (12)

which lead to �L
d = �R

d (≡ �d) ∼ 0.04� for a typical case (� is a tunnelling rate in the absence
of the qubits, so the dephasing rate is more than one order of magnitude smaller, corresponding
to a relatively weak measurement). We can regard �−1

d as the typical measurement time.
Obviously, the qubit dynamics (represented by tunnelling rate �) would be able to be detected
when �−1 < �−1

d . Because, in the present setup, the current without qubits saturates in the
range of ∼�−1, the time �−1 would serve as a standard of when measurement started. We
can also incorporate the effect of Coulomb interaction by setting �

(±)′
L = 0 as a limiting case

of strong on-site Coulomb blockade (U → ∞ in equation (2) so that no double occupation
is possible), while for weak Coulomb interaction on the island we can set �(±)′

α = �(±)
α at the

limit of U = 0.

3. Qubit dynamics without detector

In order to better understand our numerical results and the capability of our QPC detector, it is
instructive to first examine the dynamics of both a single qubit and two qubits in the absence
of any detector, and discuss how the qubit dynamics is measured by the detector.

We first solve the density matrix equations for a single qubit on the basis of localized
single quantum dot states |↑〉 and |↓〉:

˙ρ↑↑ = i�(ρ↑↓ − ρ↓↑), (13)

˙ρ↓↓ = i�(ρ↓↑ − ρ↑↓), (14)

˙ρ↑↓ = i�ρ↑↓ + i�(ρ↑↑ − ρ↓↓). (15)
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For the simple case of � = 0 (no voltage bias between the two dots so that qubit dynamics is
completely determined by the inter-dot tunnel coupling �, which corresponds to the optimal
operational point in terms of minimum dephasing as discussed in [12]), and starting from one
of the localized states ↑-state (ρ↑↑(t = 0) = 1) or ↓-state (ρ↓↓(t = 0) = 1), we have

ρ↑↑(t) = ρ↑↑(0) cos2(�t) + ρ↓↓(0) sin2(�t), (16)

ρ↓↓(t) = ρ↓↓(0) cos2(�t) + ρ↑↑(0) sin2(�t), (17)

ρ↑↓(t) = i

2
(ρ↑↑(0) − ρ↓↓(0)) sin(2�t). (18)

These solutions dictate that the QPC current should essentially be determined by ρ↑↑(t) −
ρ↓↓(t) = [ρ↑↑(0) − ρ↓↓(0)] cos 2�t . The oscillatory component of the QPC current should
thus be dominated by a 2� component (in the case of � �= 0, 2

√
�2 + �2/4), and the temporal

evolution of the current is intimately related to the initial state.
We can also infer information on the two-qubit product states from the detector current

in a similar manner because density matrices of the product states are written as ρAA(t) =
ρL

↓↓(t)ρR
↓↓(t) and so on. Here we solve the two-qubit dynamics in the absence of the detector by

expanding the density matrix on the basis spanned by the Bell states: |e1〉 = (|↓↓〉+ |↑↑〉)/√2,
|e2〉 = (|↓↓〉 − |↑↑〉)/√2, |e3〉 = (|↓↑〉 + |↑↓〉)/√2, and |e4〉 = (|↓↑〉 − |↑↓〉)/√2 (singlet
state). If we assume two identical qubits (�L = �R and �L = �R(= �)), the density matrix
equations for the two qubits (without the QPC detector: �α

d = 0) are written as

ρ̇e4e4 = 0

ρ̇e2e2 = 2i�(ρe2e1 − ρe3e2)

ρ̇e2e4 = −2iJρe2e4 − 2i�ρe1e4

(19)

ρ̇e1e1 = 2i�(ρe1e3 − ρe3e1) + 2i�(ρe1e2 − ρe2e1)

ρ̇e3e3 = −2i�(ρe1e3 − ρe3e1)

ρ̇e1e3 = −2i�(ρe3e3 − ρe1e1) − 2iJρe1e3 − 2i�ρe2e3

(20)

ρ̇e1e2 = −2i�ρe3e2 − 2i�(ρe1e1 − ρe2e2)

ρ̇e2e3 = 2i�ρe2e1 − 2iJρe2e3 − 2i�ρe1e3

(21)

ρ̇e3e4 = −2i�ρe1e4

ρ̇e1e4 = −2i�ρe3e4 − 2iJρe1e4 − 2i�ρe1e4 .
(22)

If � = 0, which again corresponds to the optimal operational point, the density matrix
equations can be classified into four groups (indicated by the four parentheses above).
First of all, equations (19) shows that the probabilities in |e2〉 and |e4〉 states are time
independent. On the other hand, according to equation (20), the probabilities in |e1〉 and
|e3〉 states oscillate as a function of {cos(4�∗t), sin(4�∗t)} (�∗ ≡ √

�2 + J 2/4). Meanwhile,
equations (21) and (22) indicate that the off-diagonal elements {ρe1e2 , ρe2e3 , ρe3e4 , ρe1e4} contain
{cos(2�∗t), sin(2�∗t)} type of oscillations. Therefore, the occupation probabilities for the
product states, ρAA = (ρe1e1 + ρe1e2 + ρe2e1 + ρe2e2)/2, ρB B = (ρe3e3 + ρe3e4 + ρe4e3 + ρe4e4)/2,
ρCC = (ρe3e3 − ρe3e4 − ρe4e3 + ρe4e4)/2, and ρDD = (ρe1e1 − ρe1e2 − ρe2e1 + ρe2e2)/2, should
all contain {cos(2�∗t), sin(2�∗t)} oscillations, reconfirming the calculations on single-qubit
dynamics at the beginning of this section. Therefore, we should be able to distinguish pure
entangled states from pure product states |A〉 ∼ |D〉 based on whether the detected period of the
coherent oscillations is limited to {cos(4�∗t), sin(4�∗t)} (|e1〉 and |e3〉) or time independent
(|e2〉 and |e4〉) in the limit of weak interaction between the qubits and the QPCs. Such behaviour
is indeed evident in our results, as shown in the following section.
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Figure 3. Time-dependent QPC current I (t) of the U = 0 case (�(±)′
α = �

(±)
α ) starting from four

product qubit states |A〉 ∼ |D〉 at time t = 0. �L = �R = 0.75�, �d = 0.04�. The two panels
refer to two different inter-qubit interaction: (a) J = 0, (b) J = �. We can distinguish the four
product states in both the J = 0 case and the J = � case. This shows that we can distinguish the
four two-qubit product states in a range of inter-qubit coupling strength.

4. Numerical results of QPC detection

In [8], we clarified three major issues regarding the capability of the two-island SET by
monitoring its time-dependent readout current: (1) the two-qubit product states (eigenstates in
the absence of inter-qubit interaction and inter-dot coupling within each qubit) |A〉 ∼ |D〉 can
be distinguished; (2) pure entangled states and pure product states can be distinguished; (3) the
quantum Zeno effect is present in a two-qubit system. In the following we show that similar
results are obtained for the serially coupled QPC detector despite its simpler state structure.

Figure 3 shows the time-dependent current at small time t ∼ 0 in the case of weak Coulomb
interaction (U = 0) (�(±)′

α = �(±)
α ) assuming that initially the two qubits are in one of the four

product states. To calculate the current when the two-qubit initial state is |A〉, for example, we
set b(0)a,A(0) = 1 and the other coefficients to zero in the total wavefunction (equations (5)
and (6)), which means that ρaa

AA(0) = 1 and other density matrix elements are all zero at t = 0.
At small t initial state |A〉 (with both electrons located in the respective lower dots) leads to the
strongest suppression of the QPC current, while initial state |D〉 (with both electrons located
in the respective upper dots) leads to the least. States |B〉 and |C〉 also produce different QPC
currents. The reason is that there is a finite bias between the left and right electrodes, so the
current flows only in one direction. Consequently, |C〉, with the left qubit electron in the
upper dot (thus less suppression on current), produces a faster rise in current than |B〉. Since
the product states are not the two-qubit eigenstates, they evolve into superposition states and
the corresponding QPC current oscillates. Nevertheless, we can distinguish the four initial
product states by the values of the readout current in both J = 0 and J �= 0 cases. Hereafter
we will focus on the J = 0 case. As shown in figure 3, the current differences between the
four two-qubit states can be detected before the coherent motion of the qubits changes the
two-qubit state as �t < π/4.

One observation we made for charge qubits measured by an SET detector is that the
amplitude of the SET current oscillations corresponding to the pure entangled states are smaller
than those of the pure product states [8]. Similar effects are also observed for the QPC detectors
here, as indicated in figures 4 and 5. A qualitative reason is that the wavefunctions of the
entangled states in the charge qubits extend over both qubits compared to the product states,
so the charge distribution of the entangled states is less effective in influencing the readout
current. Quantitatively, for instance, equation (19) also dictates that current corresponding to a
singlet state should have very weak time dependence. Indeed, figure 4 shows strong differences
between QPC currents for the singlet state |e4〉 and product state |B〉: the detector current on
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Figure 4. Time evolution of QPC current I (t) corresponding to the product |B〉 state (panel (a))
and the entangled singlet state |e4〉 (panel (b)) when the qubit gate-bias Vg (=�L = �R) changes.
The relevant parameters are chosen as �L = �R = 0.75�, J = 0, U = 0 and �d = 0.04�. The
I (t) for the product state (a) explicitly reflects the coherent oscillations of the qubit states, while
those for the entangled state are rather uniform.

Figure 5. A contour plot of the time evolution of QPC current for states ranging between |B〉
state and |C〉 state through singlet state |e4〉 (see text). The current for the “general” singlet state
shows uniform characteristics when it is close to the exact singlet state |e4〉 as |θ ± π/4| � π/12.
The chosen parameters are similar to what we have before: �L = �R = 0.75�, J = 0, Vg = 0,
U = 0, and �d = 0.04�. In addition, the current for |B〉 and |C〉 has a oscillatory component of
frequency 2� = 1.5.

the singlet state is essentially a smoothly rising function of time, while the current for the
product state has an oscillatory component of frequency ∼2� at Vg = 0. We obtained similar
current behaviours for other entangled states and product states,where the peaks of the coherent
oscillations in the other product states are shifted as inferred from figure 3. These features
hold as long as the entangled states are close to any of the Bell states, |e1〉,∼ |e4〉. Figure 5
shows the time-dependent current of the generalized singlet state cos θ |↓↑〉 + eiϕ sin θ |↑↓〉 in
the range of ϕ = π , 0 � θ � π/2. We found that the uniformity of the readout current holds
approximately up to |θ ± π/4| � π/12, which is remarkably robust (similar to the case of
charge qubits measured by SET detectors [8]). In addition, in figure 5, the current for product
states |B〉 and |C〉 also contain oscillatory components of frequency ∼2�.

An interesting aspect in studying quantum measurement is to explore the backaction of
the measurement apparatus on the qubits. In this context, the quantum Zeno effect refers
to the phenomenon that a continuous measurement slows down transitions between qubit
quantum states due to the collapse of the qubit wavefunction into observed states. This
phenomenon might be useful in quantum computation because it preserves the results of
quantum calculations for a longer period of time [13]. Figure 6 demonstrates the quantum
Zeno effect for two qubits measured by the QPC, where the initial state is chosen to be the |D〉
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Figure 6. Time dependence of ρAA(t), ρB B (t), ρCC (t) and ρDD(t) for the U = 0 case

(�(±)′
α = �

(±)
α ), starting from ρDD(t = 0) = 1, for different measurement strengths (in terms

of �d). Here the intra-qubit tunnelling rates are �L = �R = 0.75�, and there is no interaction
between the qubits: J = 0. As measurement strength �d increases, the coherent motions of qubits
slow down, which is a clear evidence of the quantum Zeno effect.

state (ρDD(t = 0) = 1). As the measurement strength increases (�d increases), the oscillations
of the density matrix elements of the two qubits are delayed, which is a clear evidence of the
slowdown described by the Zeno effect, under the condition that other origins of decoherence
are neglected.

In general, increasing measurement strength (i.e. the coupling strength between the qubits
and the QPCs) leads to faster entanglement between the qubits and the measuring apparatus,
so that measurement leads to projection of qubit states into product states. Therefore, stronger
measurement strength destroys entangled qubit states more rapidly. This is in contrast to the
product states, for which the quantum Zeno effect is observed (figure 6) [13]. We use the
concept of concurrence [14] to quantify two-qubit entanglement and calculate concurrence in
the presence of increasing measurement strength. Figure 7 shows the effect of measurement on
the singlet state, demonstrating that stronger measurement (in the form of larger �d) degrades
the entanglement (in terms of concurrence) more rapidly. As seen from equations (13)–(15)
and from (19)–(22), product states and entangled states discussed here are generally not two-
qubit eigenstates even in the absence of the detector, and thus could evolve into each other
through the time-dependent coherent oscillations. Strong detection enhances the mixing of
these states and makes it more difficult to infer the qubit states from the detector current.
Figures 8(a) and (b) show the time-dependent currents of |e4〉 (singlet state) and |e3〉 state
as functions of increasing measurement strength. Without the detector, the singlet |e4〉 state
should be time independent according to equation (19), and |e3〉 should show 4� oscillation
according to equation (20). Figures 8(a) and (b) indicate these characteristics in the weak
measurement case �d < 0.04�, which is also the case that we discussed concerning figure 4.
In this region, we would be able to distinguish the different behaviours of entangled states and
product states. However, as the strength of measurement increases, the detector current starts
to acquire other oscillatory components, which means that both states are mixing with other
states after t = 0. Figure 9 is a time-dependent diagonal matrix element ρe4e4 of the singlet
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Figure 7. Time-dependent concurrence of a two-qubit state starting from a singlet state |e4〉 as a
function of the dephasing rate �d in the same parameter region as figure 5. At t = 0 and �d = 0,
the concurrence takes a value of 1 and rapidly decreases to zero for large dephasing rates.

Figure 8. Time-dependent currents for |e4〉 (singlet state) (panel (a)) and |e3〉 state (panel (b))
state, when the dephasing rate �d is changed with � = 0. The parameters are the same as those
in figure 5. At �d < 0.04�, (a) presents the proof of time independence of the singlet state in
equation (19), and (b) shows the proof of the 4� oscillation of equation (20).

Figure 9. Time-dependent diagonal density matrix element for the singlet state ρsinglet ≡ ρe4e4 ,
when the dephasing rate �d is changed with � = 0. The parameters are the same as those in
figure 5. Without the detector, that is the case of no decoherence by measurement, ρsinglet = 1.
This figure shows that the two-qubit state begins to include states other than the singlet states,
resulting in the oscillation of the current in figure 8(a) when �d becomes large.

state. This figure also shows that the singlet state mixes with other states as the strength of
measurement increases.

In the case of a strong Coulomb interaction so that �
(±)′
L = 0, we have obtained similar

results, except that the magnitude of the average current is reduced by half because the on-site
Coulomb interaction closes one transmission channel. This is different from the coupled SET
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detector we studied before, where current uniformity in finite-U model is more persistent than
in the infinite-U model, because the internal degrees of freedom in the two-island SET allow a
redistribution of electrons between the islands. Here there is only one island with three island
states (unoccupied, singly occupied, and doubly occupied, shown in figure 2). The much
simpler internal dynamics of these states is insufficient to cause any large change in the QPC
current when Coulomb interaction is accounted for.

5. Discussion

In our study so far we have demonstrated that two-charge-qubit state information can be clearly
revealed by the transient current variations in a serially coupled QPC charge detector. The
key question now is whether such current evolutions are experimentally observable. A single
shot measurement cannot differentiate the small currents here—the current calculated is an
ensemble average over many identically prepared samples,and as indicated in figures 3, 4 and 8,
we require the measurement of ns scale dynamics of a pA current when we take � in the order
of 100 MHz. Instead, the recently developed pulsed measurement technique [1, 3, 15–18]
is a perfect approach to detect the QPC current. Specifically, the qubits and the QPCs are
repeatedly prepared in an identical initial state at the beginning of a cycle (defined as t = 0).
The system is then allowed to evolve for a particular time period τ . At t = τ the QPC is turned
off by shifting the level of the inter-QPC QD off resonance, so that sequential tunnelling is
not allowed between the two QPCs (while charges in the QPCs can still relax into the leads).
From t = τ to tprep (the end of the current cycle), operations are needed to reinitialize the
coupled qubits and the two QPCs. At t = tprep the whole cycle starts again. Throughout these
cycles, the external circuit used for measuring the current remains on, so the data acquisition
time can be as long as needed. The current Im measured as such can then be used to determine
the charge transferred (between the two QPCs) during τ (which is the same as the charge
transferred during each cycle tprep): �Q(τ ) = Im(τ )tprep, and the QPC current at τ can be
deduced as IQPC(τ ) = d�Q(τ )/dτ . Notice that what we have given here is a series of simple
guidelines, which need to be properly adapted/modified for a particular experimental system.

One issue we have been trying to address in this study is to compare the measurement
capability of a QPC detector and an SET detector. In terms of the theoretical descriptions of
the qubit–detector interaction, the major difference between the QPC detector studied here
and the SET detector in [8] is that we model each QPC by a tunnel junction, so that the
QPC–qubit interaction directly modifies strength of tunnelling, while in [8], the SET–qubit
interaction influences both the SET island state energy and the island-lead tunnelling. Despite
these differences, our numerical results showed that the current through the coupled QPC
exhibits behaviours similar to those of the two-island SET current in many respects, such as
in distinguishing the different qubit product states, in distinguishing the Bell-type entangled
states from the product states, and in the observation of the quantum Zeno effect for the qubit
product states. Stronger differences between QPC and SET detectors do appear when the
qubit–detector interaction strength increases. The measurement current of the detector that
has a larger number of internal degrees of freedom (the two-island SET) seems to be able to
describe more elaborate quantum states of the two qubits. For example, the SET current can
clearly distinguish the four product states shown in [8], while with the present QPC detector
the current shows a simpler structure and smaller differences for the different qubit states.
Qualitatively, the tunnelling rate of a QPC is generally larger than that of an SET, which
corresponds to shorter dwelling time for the QPC (in the present study the dwelling time for
QPCs is effectively taken to be zero). This difference essentially originates from the simpler
structure of a QPC compared to an SET.
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In the present study we obtained the density matrix equations under the condition that the
voltage bias between the left and right electrodes is sufficiently large such that the left–right
symmetry is broken and the transmission of electrons from the right electrode to the left can be
neglected as shown in equations (5) and (6), which makes calculation process much simpler.
In order to calculate the QPC conductance or differential conductance, which would provide
more information for some experiments, we have to improve our formulation such that the
transmission of electrons to the inverse direction is included. An approach that can properly
deal with these low bias situations is still in development.

Our configuration of the qubit–QPC coupling scheme can be straightforwardly extended
to N(N > 2)-qubit detection. However, it depends strongly on the sensitivity of the current
readout circuit such that the 2N states can be differentiated [6],and is thus better suited for only a
small number of qubits. In any case, the key objective of the present study is to obtain two-qubit
information directly and dynamically, not to invent a general detector for a multi-qubit system,
for which other configurations such as a typical one-detector-per-qubit setup are probably
more suitable and have to be further studied both experimentally and theoretically [16–20].
Furthermore, we have considered an ideal measurement process in the present study. In a
more realistic situation, imperfections such as gate operation errors [21], charge fluctuations
around the qubit–QPC systems [22], and phonons have to be considered. These imperfections
could seriously reduce the sensitivity of a measuring device. Thus more detailed analysis for
the coupled multiqubit–detector system needs to be carried out in the future to further clarify
these issues.

6. Conclusion

We have solved master equations and described various time-dependent measurement
processes of two charge qubits by two serially coupled QPCs. The current through the QPCs
is shown to be an effective means to measure the results of quantum calculations and the
presence of entangled states. Two-qubit dynamics is studied analytically and it is found that
period of coherent oscillation depends on their initial state. Our results thus show that the
serially coupled QPC can be an effective detector of two-qubit states of a pair of (coupled)
charge qubits.
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Appendix. Derivation of density matrix equations

Here we display all the density matrix equations of the qubit–QPC system. The density matrix
equations can be classified according to the electronic states of the QPC island (see figure 2)
and qubit states (z1, z2 = A, B, C, D, s =↑,↓).

dρa
z1z2

dt
= (i[Jz2 − Jz1 ] − [�z1

L + �
z2
L ])ρa

z1z2
− i�R(ρa

gr (z1),z2
− ρa

z1,gr (z2)
)

− i�L(ρa
gl (z1),z2

− ρa
z1,gl (z2)

) +
√

�
z1
R �

z2
R (ρb↑

z1z2
+ ρb↓

z1z2
), (A.1)
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dρbs
z1z2

dt
=

(
i[Jz2 − Jz1 ] − �

z′
1

L + �
z′

2
L + �

z1
R + �

z2
R

2

)
ρbs

z1z2
− i�R(ρ

bs
gr (z1),z2

− ρ
bs
z1,gr (z2)

)

− i�L(ρ
bs
gl (z1),z2

− ρ
bs
z1,gl (z2)

) +
√

�
z1
L �

z2
L ρa

z1z2
+

√
�

z′
1

R �
z′

2
R ρc

z1z2
, (A.2)

dρc
z1z2

dt
= (i[Jz2 − Jz1 ] − [�

z′
1

R + �
z′

2
R ])ρc

z1z2
− i�R(ρc

gr (z1),z2
− ρc

z1,gr (z2)
)

− i�L(ρc
gl (z1),z2

− ρc
z1,gl (z2)

) +
√

�
z′

1
L �

z′
2

L (ρb↑
z1z2

+ ρb↓
z1z2

), (A.3)

where

�A
L = �B

L = �
(+)
L , �C

L = �D
L = �

(−)
L ,

�A
R = �C

R = �
(+)
R , �B

R = �D
R = �

(−)
R ,

�A′
L = �B ′

L = �
(+)′
L , �C′

L = �D′
L = �

(−)′
L ,

�A′
R = �C′

R = �
(+)′
R , �B ′

R = �D′
R = �

(−)′
R ,

and

JA = �L + �R + J, JB = �L − �R − J,

JC = −�L + �R − J, JD = −�L − �R + J.

gl(zi) and gr (zi) are introduced for the sake of notational convenience and represent
relationships between different two-qubit states in the equations for the density matrix
elements:

gr (A) = B, gl(A) = C, gr (B) = A, gl(B) = D,

gr (C) = D, gl(C) = A, gr(D) = C, gl(D) = B.

References

[1] Nakamura Y, Pashkin Y A and Tsai J S 1999 Nature 398 786
Nakamura Y, Pashkin Y A, Yamamoto T and Tsai J S 2002 Phys. Rev. Lett. 88 047901

[2] Makhlin Y, Schön G and Shnirman A 2001 Rev. Mod. Phys. 73 357
[3] Fujisawa T, Austing D G, Tokura Y, Hirayama Y and Tarucha S 2002 Nature 419 278

Fujisawa T, Austing D G, Tokura Y, Hirayama Y and Tarucha S 2002 Phys. Rev. Lett. 88 236802
Fujisawa T, Tokura Y and Hirayama Y 2001 Phys. Rev. B 63 081304
Hayashi T, Fujisawa T, Cheong H D, Jeong Y H and Hirayama Y 2003 Phys. Rev. Lett. 91 226804

[4] van der Wiel W G, Franceschi S De, Elzerman J M, Fujisawa T, Tarucha S and Kouwenhoven L P 2003 Rev.
Mod. Phys. 75 1

Tarucha S, Austing D G, Honda T, van der Hage R J and Kouwenhoven L P 1996 Phys. Rev. Lett. 77 3613
[5] Pashkin Yu A, Yamamoto T, Astafiev O, Nakamura Y, Averin D V and Tsai J S 2003 Nature 421 823

Yamamoto T, Pashkin Y A, Astafiev O, Nakamura Y and Tsai J S 2003 Nature 425 941
[6] Tanamoto T 2001 Phys. Rev. A 64 062306

Tanamoto T 2000 Phys. Rev. A 61 022305
[7] Korotkov A N 2002 Phys. Rev. A 65 052304

Ruskov R and Korotkov A N 2003 Phys. Rev. B 67 241305
[8] Tanamoto T and Hu X 2004 Phys. Rev. B 69 115301
[9] Aleiner I L, Wingreen N S and Meir Y 1997 Phys. Rev. Lett. 79 3740

[10] Gurvitz S A and Prager Ya S 1996 Phys. Rev. B 53 15932
Gurvitz S A 1997 Phys. Rev. B 56 15215

[11] Field M, Smith C G, Pepper M, Ritchie D A, Frost J E F, Jones G A C and Hasko D G 1993 Phys. Rev. Lett.
70 1311

[12] Vion D, Aassime A, Cottet A, Joyez P, Pothier H, Urbina C, Esteve D and Devoret M H 2002 Science 296 886
[13] Zurek W H 1984 Phys. Rev. Lett. 53 391

http://dx.doi.org/10.1038/19718
http://dx.doi.org/10.1103/PhysRevLett.88.047901
http://dx.doi.org/10.1103/RevModPhys.73.357
http://dx.doi.org/10.1038/nature00976
http://dx.doi.org/10.1103/PhysRevLett.88.236802
http://dx.doi.org/10.1103/PhysRevB.63.081304
http://dx.doi.org/10.1103/PhysRevLett.91.226804
http://dx.doi.org/10.1103/RevModPhys.75.1
http://dx.doi.org/10.1103/PhysRevLett.77.3613
http://dx.doi.org/10.1038/nature01365
http://dx.doi.org/10.1038/nature02015
http://dx.doi.org/10.1103/PhysRevA.64.062306
http://dx.doi.org/10.1103/PhysRevA.61.022305
http://dx.doi.org/10.1103/PhysRevA.65.052304
http://dx.doi.org/10.1103/PhysRevB.67.241305
http://dx.doi.org/10.1103/PhysRevB.69.115301
http://dx.doi.org/10.1103/PhysRevLett.79.3740
http://dx.doi.org/10.1103/PhysRevB.53.15932
http://dx.doi.org/10.1103/PhysRevB.56.15215
http://dx.doi.org/10.1103/PhysRevLett.70.1311
http://dx.doi.org/10.1126/science.1069372
http://dx.doi.org/10.1103/PhysRevLett.53.391


Measurement of two-qubit states with quantum point contacts coupled by a quantum dot 6909

Duan L M and Guo G C 1998 Phys. Rev. A 57 2399
[14] Hill S and Wootters W K 1997 Phys. Rev. Lett. 78 5022

Wootters W K 1998 Phys. Rev. Lett. 80 2245
[15] Schoelkopf R J, Wahlgren P, Kozhevnikov A A, Delsing P and Prober D E 1998 Science 280 1238
[16] Gardelis S, Smith C G, Cooper J, Ritchie D A, Linfield E H, Jin Y and Pepper M 2003 Phys. Rev. B 67 073302

Rushforth A W, Smith C G, Godfrey M D, Beere H E, Ritchie D A and Pepper M 2004 Phys. Rev. B 69 113309
[17] Cain P A, Ahmed H and Williams D A 2002 J. Appl. Phys. 92 346

Cain P A, Ahmed H and Williams D A 2001 Appl. Phys. Lett. 78 3624
[18] Potok R M, Folk J A, Marcus C M, Umansky V, Hanson M and Gossard A C 2003 Phys. Rev. Lett. 91 016802
[19] Elzerman J M, Hanson R, Greidanus J S, Willems van Beveren L H, Franceschi S De, Vandersypen L M K,

Tarucha S and Kouwenhoven L P 2004 Phys. Rev. B 67 161308
Zhang L-X, Matagne P, Leburton J P, Hanson R and Kouwenhoven L P 2004 Phys. Rev. B 69 245301

[20] DiCarlo L, Lynch H J, Johnson A C, Childress L I, Crockett K, Marcus C M, Hanson M P and Gossard A C 2004
Phys. Rev. Lett. 92 226801

[21] Hu X and Das S S 2002 Phys. Rev. A 66 012312
[22] Itakura T and Tokura Y 2003 Phys. Rev. B 67 195320

http://dx.doi.org/10.1103/PhysRevA.57.2399
http://dx.doi.org/10.1103/PhysRevLett.78.5022
http://dx.doi.org/10.1103/PhysRevLett.80.2245
http://dx.doi.org/10.1126/science.280.5367.1238
http://dx.doi.org/10.1103/PhysRevB.67.073302
http://dx.doi.org/10.1103/PhysRevB.69.113309
http://dx.doi.org/10.1063/1.1482425
http://dx.doi.org/10.1063/1.1377320
http://dx.doi.org/10.1103/PhysRevLett.91.016802
http://dx.doi.org/10.1103/PhysRevB.67.161308
http://dx.doi.org/10.1103/PhysRevB.69.245301
http://dx.doi.org/10.1103/PhysRevLett.92.226801
http://dx.doi.org/10.1103/PhysRevA.66.012312
http://dx.doi.org/10.1103/PhysRevB.67.195320

	1. Introduction
	2. Formulation
	3. Qubit dynamics without detector
	4. Numerical results of QPC detection
	5. Discussion
	6. Conclusion
	Acknowledgments
	Appendix. Derivation of density matrix equations
	References

